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ABSTRACT

Deep Neural Networks (DNNs) have given many state-of-the-
art results to acoustic modelling in many Automatic Speech
Recognition (ASR) tasks. More recently, Convolutional Neu-
ral Networks (CNNs) have demonstrated powerful acoustic
modelling capabilities due to its ability to account for struc-
tural locality in the feature space, and CNNs have been shown
to often outperform their DNNs counterparts on TIMIT and
LVCSR. In this paper, we perform a detailed empirical study
of CNNs under the low resource condition, wherein we only
have 10 hours of training data. We find a two dimensional
convolutional structure to perform the best, and emphasize
the importance to consider time and spectrum in modelling
acoustic patterns. We report detailed error rates and find
CNNs to be more efficient and outperform fully connected
DNNs.

Index Terms— Deep Neural Networks, Convolutional
Neural Networks, Automatic Speech Recognition

1. INTRODUCTION

Deep Neural Networks (DNNs) have become a vital compo-
nent to state-of-the-art acoustic models in Automatic Speech
Recognition (ASR) [1]. Combined with Hidden Markov
Models (HMM), hybrid DNN-HMM systems have produced
state-of-the-art results in many ASR tasks [2, 3]. The DNN
acoustic models are typically given several consecutive con-
text frames of some spectral feature (e.g., log-Mel filter
banks) as inputs and trained via supervised backpropagation
[4] with softmax targets modelling the HMM acoustic states.

One fundamental drawback of DNNs is the fully con-
nected nature, DNNs do not take advantage of structural lo-
cality in the feature space. The acoustic signals may con-
tain fundamental two dimensional feature patterns similar to
computer vision [5] which we may want to model. We also
desire a model able to account for small shifts and pertur-
bations in the feature space which may be caused by differ-
ent speaking styles and settings. In the low resource settings,
DNNs may lead to overfitting and poor generalization. Con-
volutional Neural Networks (CNNs) is an alternative neural
network architecture that attempts to alleviate some of these
issues.

2. CONVOLUTIONAL NEURAL NETWORKS

CNNs capture structural locality by applying convolutional
filters which only connect to a subset region of the previous
layer (rather than being fully connected) and exploiting one or
two dimensional locality [6]. The convolution filter weights
are tied and shared across the feature space giving transla-
tional invariance, a shift in the feature space would result in
a shift in the output space. CNNs also typically incorporate
pooling which gives additional translational and rotational in-
variances [5]. Max pooling works by emitting only the maxi-
mum neuron in a locality region, giving the same response to
small translational or rotational invariances. The translational
and rotational invariance modelling capabilities provided by
CNNs results in a much more generalized and robust model
compared to standard DNNs. This is extremely helpful in
low-resource ASR tasks, where there is limited training data
available and the model is much more prone to overfitting.

CNNs have been demonstrating strong improvements
over standard fully connected DNNs in ASR [7], including
TIMIT [8, 9], large vocabulary continuous speech recognition
(LVCSR) [10, 11] and feature extraction [12]. Convolution
weights applied to acoustic modelling can be either Lim-
ited Weight Sharing (LWS) or Full Weight Sharing (FWS)
[8]. The intuition is that different spectral bands may ex-
hibit different pattern characteristics, and henceforth different
spectral bands should utilize different convolutional weights.
There are two main disadvantages to LWS, the first is the
need to tune the size of the frequency bands (if not using
a band size of 1). The second disadvantage is the inability
to add additional layers of convolution on top. In theory,
given enough feature maps, FWS should be able to match the
performance of LWS assuming the model is able learn which
convolution feature maps to use and discard in the appropriate
frequency bands. LWS gave better performance over FWS in
[8], however [11] showed similar results between FWS and
LWS.

In computer vision square convolutional filter sizes and
square pooling sizes are applicable due to the uniformity
across both dimensions in natural images. We do not nec-
essarily enjoy this uniformity in acoustic modelling since
the time and spectrum pattern behaviours could be vastly
different.



We perform a detailed analysis in this paper. We establish
a DNN baseline in Section 3.1, determine the first convolution
layer filter size in Section 3.2, max pooling size in Section 3.3,
second convolution layer filter size in Section 3.4, number of
feature maps in Section 3.5, dropout and additional layers in
Section 3.6. We report both Frame Accuracy (FA) and Word
Error Rates (WER) in our work.

3. EXPERIMENTS

We experiment with the BABEL Bengali LimitedLP (IARPA-
babel103b-v0.4b) corpus which has been collected and re-
leased under the IARPA BABEL research program. Our in-
put features are 23-dimension log-Mel filter bank feature co-
efficients padded with 10 left and right frame contexts (total
21 frames), and our targets are 2030 context-dependent tied
acoustic states generated from a GMM-HMM system. The
development set contains only 10 hours of data.

We train all our neural networks to minimize the cross
entropy loss with stochastic gradient descent [4] with mini-
batch size of 256. We apply no pre-training, our network
weights are initialized randomly with Gaussian distribution
µ = 0 and σ2 = 0.001, and biases set to zero. We start off
with a constant learning rate of 0.001 until convergence on a
held out 10% validation set randomly sampled on the frame
level from the development set. We lower the learning rate to
0.0001 until the network converges again. Finally, we fine-
tune the network at 0.00001 for one more additional epoch.
We use a constant classical momentum [13] of 0.9 through
the entire optimization process. We found the momentum not
only speedup the training but also generally gave slightly bet-
ter performance over omitting momentum. We also experi-
mented with AdaGrad [14], we found the models converge
much more quickly, however they tend to overfit and give
worse results as also experimented by [15].

3.1. Deep Neural Networks

We first want to establish a baseline with fully connected
DNNs. Rectified Linear Units (ReLU) DNNs have become
a popular activation choice in acoustic modelling [3, 16, 17].
The ReLU non-linearity max(0, x) are often significantly
faster to train (e.g., faster convergence and typically require
no pre-training) and give comparable performance to (pre-
trained) sigmoidal nets.

Our DNNs consist of 2048 ReLUs at each hidden layer
and a 2030 softmax output. We also experimented with 1024
and 3072 hidden layers, however we found those to give
worse results. We vary the number of layers by adding addi-
tional hidden layers and find the WER to generally improve
with each additional layer till around 14 layers. We found
even with an extremely deep 19 layer model, the optimization
does not get stuck and produced one of the best WER results,
as also seen by [16] with deep ReLU DNNs. Despite our

Table 1. DNN Frame Accuracy (FA) and Word Error Rates
(WER): We vary the number of fully connected ReLU layers.

Layers FA WER Layers FA WER
2 33.0 83.8 11 39.4 72.2
3 36.6 78.8 12 39.4 71.8
4 38.5 75.8 13 39.4 71.7
5 39.1 74.4 14 39.7 70.9
6 39.8 73.3 15 39.6 71.2
7 40.1 72.4 16 39.6 71.4
8 40.1 72.4 17 39.6 71.3
9 40.2 72.2 18 39.5 71.3
10 39.4 72.6 19 39.6 70.8

small dataset size, the deep ReLU DNNs with over 10 layers
did not appear to overfit the problem, but rather gave addi-
tional generalized performance over the shallow networks.
Table 1 gives the full results of our ReLU DNN experiments.
We find there is a virtually no correlation between the FA and
WER beyond a FA of 39.0. In fact, the deep (> 10 layers)
ReLU DNNs gave worse FAs but better WERs over some of
the more shallow networks, this suggests the deep models are
underfitting the phoneme training dataset but able to produce
a more generalized acoustic model. Continuing the training
after convergence of the validation set closed the WER gap
between the shallow and deep networks, suggesting the val-
idation set is a poor representation of the true distribution.
However, our recipe stops after the held out validation con-
verges as described in Section 3, we did not want to use the
test set as validation in our recipe.

3.2. First Layer Convolution Filter Size

In this set of experiments, we replace the first fully connected
layer with a convolutional layer. Following the convolution
layers are a sequence of fully connected layers of size 2048
ReLU hidden layers. We fix the total number of layers to be 6.
The number of feature maps in the convolution layer is fixed
to 64, and the activation function of the convolutional layer is
ReLU. Given the results of [11], we apply FWS.

Table 2 gives the experimental results of varying the first
layer convolutional filter size across both spectrum and time.
The first column and first row of Table 2 is exactly the same
as one dimensional convolution across time or spectrum re-
spectively. We also experimented with two dimensional con-
volutional filters spanning both time and spectrum. The 6
layer fully connected ReLU DNN experiment from Section
3.1 gave a WER of 73.3, we see significant performance gains
by just switching the first layer from fully connected to con-
volutional obtaining a 71.0 WER. The convolutional layer in
the first layer of the CNN is able to generate a more robust
feature representation for the model.

We find several models capable of reaching a WER be-
tween 71.0 and 71.1. Surprisingly, we did not find spectrum



Table 2. CNN Word Error Rates: We vary the size of the convolutional layer filter size across spectrum and time.
Spectrum

1 2 3 4 5 6 7 8 9

Ti
m

e

1 72.4 72.5 72.2 72.0 72.1 72.2 71.9 71.9
2 72.2 72.2 71.8 71.4 71.8 71.7 71.6 71.6 71.6
3 72.1 71.9 72.0 71.7 71.7 71.4 71.3 71.7 71.6
4 72.1 71.8 71.9 71.5 71.5 71.2 71.3 71.1 71.3
5 72.3 71.9 71.2 71.3 71.4 71.3 71.1 71.1 71.3
6 72.2 71.6 71.3 71.1 71.2 71.1 71.3 71.1 71.4
7 72.0 71.6 71.4 71.3 71.2 71.3 71.2 71.4 71.3
8 71.8 71.5 71.0 71.2 71.2 71.2 71.2 71.3 71.1
9 71.8 71.5 71.4 71.3 71.2 71.4 71.4 71.2 71.5

convolution to be much more important over time convolu-
tion, but rather we find the two dimensional filters to outper-
form one dimensional spectrum filters. We had expected time
convolution to not be as important due to the ability of the
HMM to model the temporal signal patterns. We hypothesize
the two dimensional convolution to help over one dimensional
spectral convolution for several reasons. First, in low resource
datasets, the limited training dataset means the model is much
more prone to overfitting and biasing to the common phoneme
states, the convolutional filters provide a means of regulariza-
tion. Secondly, we force the convolutional filters to consider
surrounding frames when generating the next layer feature
representation. The model is able to model local signal pat-
terns that cross both time and spectrum dimensions. Finally,
the model is much more tolerant to small perturbations in the
input space in both time and frequency simultaneously.

We find the best model to use a filter size of 8×3 reaching
a WER of 71.0. We also find the square convolution model
of 6 × 6 performs very closely at 71.1 WER. In fact, several
models were able to attain a WER of 71.1 (4×8, 5×7, 5×8,
6×4, 6×6, 6×8 and 8×9). The mean dimensions of the best
filters are 6.0 × 6.6, suggesting only a small significance of
spectrum convolution over time. This emphasizes the impor-
tance of considering time and spectrum simultaneously in the
convolution filters. We were almost able to match the 19 layer
fully connected ReLU DNN WER of 70.8 using just one third
of the number of layers. For reference, the 8 × 3 and 6 × 6
filter models had a FA of 41.0 and 41.1 respectively.

3.3. Pooling

Max pooling have been shown to outperform average pooling
and perform very closely to stochastic pooling in ASR [11].
In this section, we investigate the effects of max pooling. We
take two of the best architectures determined in Section 3.2
and append a max pooling layer after the convolution layer
and before the sequence of fully connected layers. We use
overlap pooling since we found it to perform better over non-
overlap pooling as also seen in computer vision [18]; albeit
[11]’s experiments with LVCSR did not see an improvement

Table 3. CNN Word Error Rates: We fix the first convolution
layer with 8 × 3 filter size, and vary the max pooling layer
size across spectrum and time.

Spectrum
1 2 3 4 5

Ti
m

e

1 70.8 70.4 70.3 70.5
2 71.0 70.6 70.0 70.0 70.2
3 70.5 70.5 70.0 69.9 70.4
4 70.8 70.5 70.0 69.9 70.3
5 70.7 70.7 70.3 70.2 70.4

with using overlap pooling in frequency (however, it did not
hurt). Pooling without overlap can also be seen as subsam-
pling the signal, which can degrade performance as observed
by [11]. Overlap pooling is much more useful in prevent-
ing overfitting in datasets with limited training samples as ob-
served by [18] in computer vision.

We vary the size of the max pooling across both spectrum
and time. Table 3 gives the experimental results with a first
layer convolutional filter size fixed at 8× 3, and Table 4 gives
the results for convolutional filter size fixed at 6× 6. For ref-
erence, the best convolutional results from Section 3.2 gives
the best WER of 71.0. We find using a first layer of convo-
lution size 6 × 6, followed by max pooling in both time and
spectrum gave the best results with a WER of 69.6. The best
result pooling size was 3× 4 and 4× 4 and gave an equal FA
of 41.6.

3.4. Second Layer Convolution Filter Size

We now investigate adding a second convolutional layer on
top of the max pooling layer in Table 5. We replace the fully
connected layer following the max pooling layer with a con-
volutional layer. We see a very small improvement increas-
ing the number of feature maps to 128 / 128 with our WER
improving to 69.2 with FA of 40.6 (filter size 3× 6), and the
square filter size of 5×5 to perform very closely at 69.3 WER.
The experiments suggest there is much less local structure for



Table 4. CNN Word Error Rates: We fix the first convolution
layer with 6 × 6 filter size, and vary the max pooling layer
size across spectrum and time.

Spectrum
1 2 3 4 5

Ti
m

e

1 70.8 70.1 70.2 70.6
2 70.8 70.5 70.1 70.0 69.8
3 70.4 70.2 69.9 69.6 70.1
4 70.5 70.0 70.0 69.6 70.1
5 70.3 70.2 69.9 69.9 70.2

Table 5. CNN Word Error Rates: We fix the first convolu-
tional layer with 6× 6 filter size followed by 4× 4 max pool-
ing and vary the size of the second convolution layer filter size
across spectrum and time.

Spectrum
1 2 3 4 5 6 7

Ti
m

e

1 69.9 69.7 69.8 69.8 69.9 69.9
2 69.9 69.8 70.0 69.6 69.5 69.5 69.8
3 69.8 69.9 70.1 69.3 69.6 69.2 69.2
4 70.1 69.8 70.0 70.0 69.9 69.3 69.8
5 70.4 70.2 69.6 69.9 69.3 69.7 69.4
6 70.1 69.9 69.5 69.4 70.0 69.6 69.6
7 70.5 69.8 69.4 69.8 69.8 69.3 69.9

the second convolution layer to take advantage of compared
to the first convolution layer.

3.5. Feature Maps

In this set of experiments, we vary the number of feature maps
in the convolutional layers. Table 6 gives the results, we find
adding additional feature maps did not yield any meaningful
gains in performance, with only a 0.1 absolute improvement
in WER using 128 / 128 feature maps. We surmise our limited
training dataset to be too small for the bigger model to learn
new useful filters. When using 256 / 256 feature maps, the
FA improves the most, however there is a small degradation
in the WER, it is unclear why this is happening.

3.6. Dropout and Additional Hidden Layers

Dropout [19] adds robustness to our model by preventing fea-
ture co-adaptation. Dropout is helpful in the low resource
condition since it is very easy to overfit the small training
dataset. We want to see the effects of dropout on our CNN.
We apply a 50% dropout rate on all the fully connected lay-
ers for our 6 layer architecture (with 128 / 128 feature maps).
We report an improvement of FA and WER of 43.6 and 67.3
respectively.

In Section 3.1 we saw substantial gains by using many
hidden layers, here we append additional fully connected lay-

Table 6. CNN Word Error Rates: We fix the first convolu-
tional layer with 6 × 6 filter size, followed by 4 × 4 max
pooling, and 5 × 5 convolution, we then vary the number of
feature maps in the convolution layers.

First Layer Second Layer FA WER
64 64 40.7 69.3
64 128 40.0 69.3
128 64 41.1 69.6
128 128 41.0 69.2
128 256 51.1 69.5
256 128 41.1 69.6
256 256 41.3 69.5

Table 7. CNN Frame Accuracy (FA) and Word Error Rates
(WER): we vary the number of fully connected hidden layers.

Layers FA WER Layers FA WER
4 41.0 69.7 12 41.6 68.6
5 41.0 69.1 13 41.4 68.4
6 41.0 69.2 14 41.7 68.5
7 41.1 69.5 15 41.9 68.0
8 41.2 69.3 16 42.0 68.1
9 41.3 69.1 17 42.0 68.1
10 41.5 69.1 18 42.2 67.9
11 41.4 68.6 19 42.1 67.7

ers (without dropout) to our CNN. Table 7 gives the results.
We find using a deep 19 layer model gives a WER 67.7.

4. CONCLUSION

We have conducted a detailed empirical study of CNN acous-
tic models in low resource language ASR. We emphasize the
importance to use two dimensional convolution filters mod-
elling signal patterns that span across spectrum and time in
the acoustic signal. Our final CNN model gives a 3.5 absolute
WER improvement over our baseline DNN. We find CNNs to
improve over fully connected DNNs providing more robust-
ness and better generalization in the low resource condition.
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